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Thermal lattice Boltzmann simulations of variable Prandtl number turbulent flows
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Thermal lattice Boltzmann~TLBE! models that utilize the single relaxation time scalar Bhatnagar, Gross,
and Krook collision operator have an invariant Prandtl number. For flows with arbitrary Prandtl number, a
matrix collision operator is introduced. The relaxation parameters are generalized so that the transport coeffi-
cients become density independent. TLBE simulations are presented for two-dimensional free decaying turbu-
lence induced by a strongly perturbed double velocity shear layer for various Prandtl numbers.
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I. INTRODUCTION

The lattice Boltzmann method~LBE!, an outgrowth of
lattice gas automaton~LGA! @1–3#, has been considered re
cently as a possible alternative explicit numerical schem
conventional methods for solving nonlinear macrosco
physical systems, in particular for Navier-Stokes flows. L
LGA, LBE is ideally suited for parallel computing environ
ment while in some respects improving the ancestral L
model by eliminating statistical noise, non-Galilean inva
ance as well as pressure that is velocity dependent. Th
accomplished essentially in LBE at the expense of work
with floating point rather than Boolean variables and
need to specify an appropriate equilibrium distribution
which collisions drive the macroscopic system. The pr
paid for this generalization is the loss of an H theorem a
possible numerical instabilities. The physical interpretat
of LBE consists of two steps:~1! a streaming step that ad
vects particles from a particular node to its nearest neigh
according to their lattice velocities, and~2! a collision step
that describes the local change in the distribution funct
due to particle collisions at each nodal site. The inher
beauty of the method is that both operations are local
this makes LBE ideal for multiparallel processor machin
Of course there are many kinetic models that will reprodu
the desired form of macroscopic nonlinear transport eq
tions. In LBE, one goes from a macroscopic to a microsco
description to work with the simplest possible micromod
which is computationally most efficient. Its motivations re
on the fact that the details of the microscopic dynamics af
only the transport coefficients and do not alter the form
fluid conservation equations.

An important refinement of the LBE was proposed
Refs.@4,5#, where the collision operator was generically li
earized for simplicity as a product of the collision matrix a
the perturbative part of the particle distribution functio
571063-651X/98/57~4!/4227~11!/$15.00
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Even further simplification was proposed by introducing
Bhatnagar, Gross, and Krook~BGK! version@6# in which the
collision operator is condensed into a single relaxation
rameter. This scalar collision operator is found not only s
ficient to be able to recover the desired nonlinear transp
equations under Chapman-Enskog expansions, but is com
tationally more efficient. Even though the dynamical pha
space has been increased by going from macroscopic
microscopic description, the advantages of explicit latt
BGK models@6–9# can be summarized as follows: paralle
ism of the method, the simplicity of the code, easy treatm
of realistic boundary conditions, and ready extension to
problems. However, most of the thermal lattice Boltzma
models~TLBE! that utilize the BGK collision operator@9–
11#, utilize only one relaxation time scale so that both t
shear viscositym and the thermal conductivityk transport
coefficients are intrinsically linked. Therefore these mod
allow only for fixed Prandtl number flows, where Pr5m/k.
It is well known that, under appropriate conditions, the h
flux to walls can be a function of the Prandtl number: f
some range of Prandtl number, the heat flux is from
walls, while in other Prandtl number ranges, the heat flux
into the walls and hence there is interest in observing
change in flow characteristics with Prandtl number. Here
extend TLBE to handle flows with variable Prandtl numbe
We shall comment on earlier variable Prandtl number
tempts made by other authors@12,13# in Sec. V.

In the following section, we will describe an extende
tensor collision operator@14# that allows variable Prandt
number flows. Incorporation of an additional free parame
in the off-diagonal components of the matrix collision ope
tor will lead to a multirelaxation scheme. The relaxation p
rameters will be generalized so that transport coefficients
come density independent, a result well known fro
classical kinetic theory of dilute gases@15#. All previous lat-
tice Boltzmann models have suffered from the problem
4227 © 1998 The American Physical Society
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4228 57SOE, VAHALA, PAVLO, VAHALA, AND CHEN
density-dependent transport coefficients. Even though
poses no problem for incompressible flows, it is critical a
must be handled for compressible fluid simulations. In S
II, we discuss the Chapman-Enskog procedure used in L
and derive the desired macroscopic fluid equations and tr
port coefficients. In Sec. III, we present TLBE simulatio
results for the effect of velocity shear layer on a heat fr
for various Prandtl numbers. The numerical stability of t
proposed model is discussed in Sec. IV, while Sec. V
devoted to a summary and concluding remarks. In the
pendix, we perform numerical tests to verify that our e
tended tensor collision operator~introduced in Sec. II! can be
properly used for variable Prandtl number flows.

II. TLBE WITH EXTENDED COLLISION OPERATOR

The governing equation of TLBE, which in local micro
scopic units of length and time takes the generic form

Npi~x1epi ,t11!2Npi~x,t !5Dpi , i 51,...,bp . ~1!

This describes the evolution of the mean particle popula
Npi in the discrete phase space. The indicesp and i are for
sublattice and lattice links, respectively. Thus, for a 2D h
agonal lattice,bp56 as each lattice node is connected to
other spatial sites. Strictly speaking, one should call thi
triangular lattice. A hexagonal lattice has only 3 links.epi is
the lattice vector giving the velocity of moving particles
the system. The speed in each sublattice isuepiu5p. To re-
cover the correct macroscopic behavior, rest particles m
also be included and will be labeled byp50 with e050 and
b051. Dpi is the collision matrix whose eigenvalues contr
the transport coefficients. In nearly all lattice Boltzmann
erature,Dpi has been reduced to the BGK@6# form for com-
putational simplicity,

Dpi52
1

t
~Npi2Npi

eq!. ~2!

wheret is a relaxation parameter that determines the time
Npi to relax to some appropriately chosen equilibrium dis
bution functionNpi

eq. Unfortunately, this yields an invarian
Prandtl number. This is because the scalar collision oper
in BGK takes the form2(1/t)d i j (Np j2Np j

eq) and this forces
the eigenvalues for the momentum and energy trans
modes to be identical because of the Kronecker tensord i j .
Thus for variable Prandtl number flows, it is convenient
generalize the scalar collision operator into a circulant ma
with the inclusion of another free parameteru in the off
diagonal components@14#

Dpi52
1

t
~Npi2Npi

eq!2
u

bpep
2 (

j
epiaep ja~Np j2Np j

eq!

[
21

t (
j

Ai j ~Np j2Np j
eq!. ~3!

Here we do not defineDpi by the scattering rules as in LGA
but enforce certain symmetry requirements. As a result,Ai j
is symmetric, cyclic, with the nonzero eigenvalues

l151, ~4!
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2 D ~5!

of multiplicity 4 and 2, respectively, for a hexagonal lattic
The equilibrium distributionNpi

eq is assumed to be a truncate
power series@9# in the mean velocityv:

Npi
eq5Ap1Bp~epi•v!1Cp~epi•v!21Dpv21Ep~epi•v!3

1Fp~epi•v!v2. ~6!

The coefficientsAp ,Bp¯Fp are functions of the mean
densityn and mean temperature«, where

n5(
pi

Npi , ~7!

nv5(
pi

Npiepi , ~8!

n«5
1

2 (
pi

Npi~epi2v!2. ~9!

The explicit form of these coefficients depends on t
geometry of the underlying lattice and are given in Ref.@9#
for a 2D hexagonal lattice. Constraints imposed onNeq and
the collision matrixDpi are such that the local collisiona
invariants (piDpi50, (piDpiepi50, and (piDpiepi

2 50 are
satisfied. Further physical constraints are also imposed
particular, one must impose Galilean invariance and req
that the pressure be independent of the mean macrosc
velocity.

To recover the desired thermal Navier-Stokes equatio
we first translate the discrete lattice Boltzmann equation i
the continuous space and time form by Taylor expanding~1!
in the long wavelength and the low frequency limit:

] tNpi1epia]Npi1
1

2
] t

2Npi1epia]a] tNpi

1
1

2
epiaepib]a]bNpi5Dpi~N!, ~10!

where the subindicesa and b represent Cartesian compo
nents with summation over repeated subscripts. We now
lize the Chapman-Enskog procedure, assuming the follow
multiscale expansion for the time and spatial derivatives i
small quantitye :

] t→e] t11e2] t2 , ]a→e]a . ~11!

e is, in essence, the Knudsen number. We also expand
distribution function as

Npi5Npi
~0!1eNpi

~1! ~12!

with Npi
(0)5Npi

eq, andNpi
(1) is the perturbative part of the dis

tribution function. Substituting the above expressions in
Eq. ~10!, we obtain

O~e!: ~] t11epia]a!Npi
~eq!52

1

t (
j

Ai j Np j
~1! , ~13!
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57 4229THERMAL LATTICE BOLTZMANN SIMULATIONS O F . . .
O~e2!: ] t2Npi
eq1~] t11epia]a!Npi

~1!

1 1
2 ~] t11epia]a!2Npi

eq50.
~14!

Taking moments of Eq.~13! yields

] t1n1]a~nva!50, ~15!

] t1~nva!1]bPab
eq 50, ~16!

] t1~n«1 1
2 nv2!1]aQa

eq50 ~17!

with momentum and heat fluxes

Pab
eq 5(

pi
epiaepibNpi

eq, ~18!

Qa
eq5

1

2 (
pi

epi
2 epiaNpi

eq. ~19!

Note that the right-hand side of Eq.~13! does not contribute
to the moment equations~15!–~17!. This is because of the
constraints imposed for the local collisional invariants.
making use of Eq.~6! we can write Eqs.~18! and ~19! in
terms of macroscopic quantities:

Pab
eq 5

2

D
n«dab1nvavb , ~20!

Qa
eq5

D12

2
neva1

1

2
nv2va , ~21!

whereD is the dimension of the lattice. Thus by substituti
these expressions into Eqs.~16! and~17!, we find the follow-
ing nondissipative Euler fluid equations, i.e., atO(e):

] t1n1]a~nva!50, ~22!

] t1~nva!1]b~nvavb!52]aP, ~23!

] t1~n«!1]a~n«va!52P]ava . ~24!

Here we can identify the velocity-independent portion
the momentum flux tensor in Eq.~20! as the pressureP, with
P5n«; i.e., we find the equation of state for an ideal gas

To obtain the continuity, momentum, and energy eq
tions atO(e2), we take appropriate moments of Eq.~14! to
get

] t2n50, ~25!

] t2~nva!1]bPab
~1!50, ~26!

] t2~n«!1]aQa
~1!1]avbPab

~1!50, ~27!

wherePab
(1) andQa

(1) are momentum and heat fluxes, respe
tively,

Pab
~1!5S 12

l1

2t D(
pi

epiaepibNpi
~1! , ~28!
f

-

-

Qa
~1!5S 12

l2

2t D 1

2 (
pi

epi
2 epiaNpi

~1! . ~29!

Terms with the nonequilibrium components of the distrib
tion function Npi

(1) can be evaluated using the first-ord
equations. Now since the circulant matrixAi j in Eq. ~3! sat-
isfies the eigenvalue relations

(
i

epiaepibAi j 5l1ep jaep jb , ~30!

(
i

epi
2 epiaAi j 5l2ep j

2 ep ja , ~31!

Pab
(1) andQa

(1) can be determined in terms of the equilibriu
distribution functions

Pab
~1!5S 12

l1

2t D(
pi

epiaepib

3S 2t(
j

Ai j
21~] t11ep jg]g!Np j

eqD , ~32!

Qa
~1!5S 12

l2

2t D 1

2 (
pi

epi
2 epia

3S 2t(
j

Ai j
21~] t11ep jb]b!Np j

eqD , ~33!

whereAi j
21 is the inverse matrix ofAi j . When Eqs.~26!–

~27! are evaluated and combined with equations of first a
second order ine, the desired macroscopic fluid equatio
are found:

] tn1]a~nva!50, ~34!

] t~nva!1]b~nvavb!52]aP1]a~l]gvg!

1]b@m~]avb1]bva!#, ~35!

] t~n«!1]a~n«va!52P]ava1]a~k]a«!

1m~]avb1]bva!]avb1l~]bvb!2.

~36!

On identifying the transport coefficients in Eqs.~34!–~36!
with the corresponding terms in thermal Navier-Stokes eq
tions, we determine the values of shear viscositym and ther-
mal conductivityk :

m5neS t

l1
2

1

2D , ~37!

k52neS t

l2
2

1

2D . ~38!

On choosing the relaxation times~at each lattice node!

t5S m0

n~x,t !
1

1

2D , ~39!
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FIG. 1. The unperturbed~a! velocity, ~b! temperature, and~c! density profiles. The scale has been normalized to 0<x,y<127 for
convenience. The hexagonal lattice is 5123512.
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u5S 4n~x,t !

k01n~x,t !
2

2

t D , ~40!

we obtain the final transport coefficients

m5m0«, ~41!

k5k0«, ~42!

wherek0(«) is an arbitrary function of the temperature«,
while m0(«)5ak0(«) with a5const. The Prandtl number i
then

Pr5
m0~«!

k0~«!
5a, a arbitrary. ~43!
Note that the transport coefficientsm andk are independen
of density but are functions of temperature, as is neces
from standard kinetic theory@15#. The above choice of tem
perature dependence ofm0 is dictated by gas kinetic theor
@15# in which it is shown that the temperature dependen
of the transport coefficients are the same. Ifk0 and m0 are
chosen to be constants~as in the simulations below!, then the
transport coefficients have a linear dependence on«. This is
the temperature dependence derived in standard kin
theory @15# for Maxwell molecules.

It should be noted that in the LBE Chapman-Ensk
analysis, there are higher order~cubic in the mean velocity!
deviation terms that appear in the momentum and ene
equations~35!–~36!. Their explicit forms are given in Refs
@11, 16#. However, these cubic deviation terms can be sho
@11,16# to be negligible for low Mach number flows an
since the flows under consideration here have Mach num
on the order of 0.1, we have neglected them.
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III. SIMULATIONS FOR VARIABLE PRANDTL NUMBER
TURBULENT FLOWS

We consider the role of variable Prandtl number on
free-decaying turbulence induced by a double velocity sh
layer. Simulations are performed on a 5123512 hexagonal
grid so that the Reynolds number of this flow Re.1655. For
simplicity, periodic boundary conditions are imposed, a
the plots are renormalized to 0<x,y<127. The unperturbed
velocity, temperature, and density profiles are shown in F
1. A strong~40%! asymmetric sinusoidal velocity perturba
tion is then applied leading to the vorticity profile of Fig.
The velocity shear layers~centered aty542.3 andy584.7!
will give rise to co- and counter-rotating vortex in their r
spective layers and the initial 7 vortices in each layer are
to the periodicity in the initial velocity perturbation. More
over, because of the asymmetric initial perturbation, ther
a secondary set of vortices induced~these can be readily see
in Fig. 2. within 10,y,40 and 45,y,83!.

We shall express the time evolution of the flow in term
of the eddy turnover time, which is related to the TLBE tim
scale:

Teddy

TLBE
.

L0

2pv0
.1020, ~44!

whereL05512 ~length in TLBE units! andv0 is the unper-
turbed maximum velocity. To resolve any fine scale str
tures generated by the turbulence, one requires the dis
tion length scaleLd>3 cells ~in TLBE units!, where

Ld.
L0

Re1/2. ~45!

In this simulation,Ld.16 ~since Re51655!, so that all fine
scale structures are well resolved.

The evolution of the vorticity profiles for flows with Rey
nolds number Re51655 and Prandt number Pr50.9 is
shown in Fig. 3. After one eddy turnover time,t.1, the two
major vortex layers are being sheared while one sees
beginning of alternating co- and counter-rotating vortices
the regions between the major vortex layers@Fig. 3~a!#. At
t.3, the imprint of the initial perturbation has been remov
by the flow within the two major vortex layers but it sti
persists within the secondary vortex parings@Fig. 3~b!#. At
t.5, the vortices within the major layer are beginning
form while the imprint of the initial perturbation on the su
sidiary vortices is decaying away@Fig. 3~c!#. By t.7.5 @Fig.

FIG. 2. The initial vorticity~projected onto thex-y plane! after
the strong asymmetric perturbation has been applied.
ar
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3~d!#, the two major vortex layers are beginning to intera
with each other as the major vortices form. The subsidia
vortices themselves start to merge and have now lost
imprint of the initial perturbation. Att.10 @Fig. 3~e!#, t

FIG. 3. The evolution of the vorticity for Re51655 and Pr
50.9 ~a! at t51000 LBE time steps~approximately 1 eddy turn-
over time!, ~b! at t53000 LBE time steps~3 eddy turnover times!,
~c! at t55000 LBE time steps~5 eddy turnover times!, ~d! at t
57500 LBE time steps~7.5 eddy turnover times!, ~e! at t
510 000 LBE time steps~10 eddy turnover times!, ~f! at t
515 000 LBE time steps~15 eddy turnover times!, ~g! at t
520 000 LBE time steps~20 eddy turnover times!.
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4232 57SOE, VAHALA, PAVLO, VAHALA, AND CHEN
.15 @Fig. 3~f!# andt.20 @Fig. 3~g!# eddy turnover times the
like-signed vortices merge with the final area being dom
nated by one co- and one counter-rotating vortex. The vo
merging is, of course, a distinctive property of 2D flow
energy cascades to large scales.

The corresponding decay of the peaked temperature
file is shown for eddy turnover timest.1 @Fig. 4~a!#, t.5
@Fig. 4~b!#, t.7.5 @Fig. 4~c!#, and t.10 @Fig. 4~d!#. At t
.1, one clearly sees the imprint of the initial~strong! sinu-
soidal perturbation on the unperturbed temperature profile
well as the effect of secondary co- and counter-rotating v
tices on the tail of the temperature profile. Byt.5, the tem-
perature profile is diffusing and responding to the slig
modulating in the major two vortex layers@cf. Fig. 3~c!#. For
t.7.5 andt.10, one sees, as expected especially for l
Mach number flows, how the flow convection distorts t
temperature profile on a faster time scale than diffusive p
cess@cf. vortex layer distortions in Figs. 3~d!, and 3~e!#.

We now consider the effect on the vorticity and tempe
ture as one increases the Prandtl number to Pr515 at fixed
Re51655~by decreasing the conductivity parameterk0!. We
find that there is little effect on the geometry of the domina
vortex structures as projected onto the 2D plane, the dif
ences coming more in the magnitudes. This is shown in F
5~a! and 5~b! for the vorticity att.10 and 20. What is plot-
ted here is the difference between the vorticity at Pr50.9 and
at Pr515. At t.7.5, one finds only a maximum vorticit
magnitude variation of 3% while att.20 this magnitude
variation can approach 50%. Again, this is to be expecte
free-decaying turbulence since the dominant effect com
from convection and not from the transport coefficient term
This is also seen in the temperature difference profiles, F
6~a!–6~c!, for eddy turnover timest.1 ~3% maximum dif-
ference!, t.5 ~10% difference!, andt.10 ~10% difference!.

Finally, we shall consider the effect of Reynolds numb
on the 2D breakup of the double shear layers. For th
5123512 simulations, the eddy turnover tim
Teddy.1360LBE time units and Re514 746~Fig. 7! and Re
54915~Fig. 8!. One sees qualitatively the same behavior
before, but occurring at a faster rate for higher Re. At
.3.7, the two major vortex layers are undulating and beg
ning to break up, with the initial perturbation imprint re
moved@Figs. 7~a! and 8~a!#. The secondary co- and counte
rotating vorticies can, on close inspection, be seen to
evolving on a faster time scale for Re514 746 @Fig. 7~a!#
than for Re54915 @Fig. 8~a!#. By t.7.4, there is now a
marked difference in the evolution in the breakup of the m
jor vortex layers and the evolution of these vortices for
514 746 @Fig. 7~b!#, Re54915 @Fig. 8~b!#, and Re51655
@Fig. 3~d!#, which is actually at a slightly later timet.7.5
but still has its shear layers themselves somewhat int
There is a continual difference in the evolution of the spa
filling vortices as time evolves@Figs. 7~c! and 8~c! at
t.12.9; Fig. 7~d! and 8~d! at t.14.8#. At these higher Rey-
nolds numbers, the evolution of the temperature is consi
ably different. We find that these profiles are smoothed
by the 2D turbulence within 4 eddy turnover times.

IV. STABILITY OF TLBE WITH EXTENDED
COLLISION OPERATOR

In considering the linear stability of TLBE with extende
collision operator@14# the method applied to the stabilit
-
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analysis@17# of the single-time BGK collision operator@19#
can be readily applied. In particular, for a uniform glob
equilibrium with densityn51, internal energy«5«0 and
zero mean velocityv50, the equilibrium distribution func-
tion ~6! reduces to

FIG. 4. The evolution of the temperature for Re51655 and Pr
50.9 ~a! at t51000 LBE time units~1 eddy turnover time!, ~b! at
t55000 LBE time units ~5 eddy turnover times!, ~c! at t
57500 LBE time units ~7.5 eddy turnover times!, ~d! at t
510 000 LBE time units~10 eddy turnover times!.
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Npi
eq~x!5Ap~«0![Ap

~0! ~46!

at any grid pointx.
Now apply an initial perturbationzpi

(0)(x) to this equilib-
rium distribution function so that at timet50

Npi
~0!~x!5Ap1zpi

~0!~x!. ~47!

We use the superscript index to denote the time iterat
number.

After free-streaming and extended collisional relaxation
each nodal site, we can determine@17# the new distribution
functionNpi

(1)(x). From this, we deduce that the perturbatio
at time t51 is given by

zpi
~1!~x!5(

q j
H 1

t FAp
01S eq

2

2
2«0DAp8

01~epi•eq j!Bp
0G

1S 12
1

t D dpqd i j J zq j
~0!~x2eqj !

1(
q j

Fu

2 S Bp
02

2

bpep
2 dpqD ~epi•eq j!Gzq j

~0!~x2eq j!.

~48!

Here the derivativeAp8
0[Ap8(«0) and Bp

0[Bp(«0). The u
term in Eq.~48! arises due to the use of the extended co
sion operator.

After t iterations, Eq.~48! can be written in matrix form

J~ t11!5C•S•J~ t !, ~49!

with

Jm5zpi~xk!, ~50!

where the indexk is used for relabeling the lattice nodes fo
convenience. Also, to write perturbationszpi(xk) into a vec-
tor Jm , we have introduced an isomorphic mapM of indi-
ces (p,i ,k) into a single indexm: i.e., m5M (p,i ,k). The
collisional relaxation matrixC has elements

FIG. 5. The evolution of the difference in the vorticity at R
51655—but for different Prandtl numbers: Pr515 and
Pr50.9—~a! at t510 000 LBE time steps~10 eddy turnover times!,
~b! at t520 000 LBE time steps~20 eddy turnover times!.
n

t

-
cmn5H 1

t FAp
01S eq

2

2
2«0DAp8

01~epi•eq j!Bp
0G

1S 12
1

t D dpqd i j J dkl1
u

2

3S Bp
02

2

bpep
2 dpqD ~epi•eq j!dkl , ~51!

while the streaming matrixS has elements

snm5dpqd i j d~xl2xk2eq j!. ~52!

Here n5M (q, j ,l ). The dimensionality of the matrixC•S
~for L05512! is on the order of 3.4e10633.4e106. The
matrix C•S is real but asymmetric for more than 1 movin
speed, as is required for TLBE under any chosen latt

FIG. 6. The evolution of the difference in the temperature
Re51655 but for different Prandtl numbers: Pr515 and Pr50.9;
~a! at t51000 LBE time steps~1 eddy turnover time!, ~b! at t
55000 LBE time steps~5 eddy turnover times!, ~c! at t
510 000 LBE time steps~10 eddy turnover times!.
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Without appealing to the tremendous memory requirem
for a matrix of this size, it is impossible to use standard too
such as NAG library or IDL, for eigenvalue analysis becau
of the accumulation of numerical errors. However, the fo
of the matrixC•S allows the use of efficient iterative meth
ods.

From the stability point of view, we are interested only
the spectral radiusrl of the matrixC•S, i.e., the maximum
absolute value of all its eigenvalueslm . For this purpose, we
adopt the method of powers@18#. Suppose that anM3M
matrix A has M linearly independent eigenvalueswm with
corresponding eigenvalueslm , m51,...,M . An arbitrary
vectorv0 can then be expressed as

v05 (
m51

M

amwm ~53!

so that thenth iterated vectorvn ,

vn5Anv05 (
m51

M

lm
n amwm . ~54!

Let l1 be the dominant eigenvalue:ul1u.ulmu, for all m
.1. Providedv0 is not orthogonal tow1 ~so thata1Þ0!

lim
n→`

1

l1
n An

•v05a1w1 ~55!

so that

FIG. 7. The evolution of the vorticity for the double shear laye
but now at Re514 746 and Pr50.44 on a 5123512 hexagonal grid.
~a! At t55000 LBE time steps~3.7 eddy turnover times!, ~b! at t
510 000 LBE time steps~7.4 eddy turnover times!, ~c! at t
.17 500 LBE time steps~12.9 eddy turnover times!, ~d! at t
520 000 LBE time steps~14.8 eddy turnover times!.
nt
,
e l15 lim

n→`

~y•vn11!

~y•vn!
~56!

for any vectory not orthogonal tow1 . In practice, for thenth
approximation of the leading eigenvaluel1

(n) , one takes the
quotient of the maximum components of two successive v
tors vn andvn11 .

The convergence tol1 in Eq. ~56! is guaranteed only if a
dominant ~single or multiple! real eigenvalues exists. It is
easy to derive a similar expression for the case in whic
single complex pair of eigenvalues dominates. Stric
speaking, one would have to treat individually all spec
cases@i.e., all possible combinations of real and comple
eigenvalues of the same~maximum! absolute values#. How-
ever, this is essentially impossible considering the numbe
eigenvalues involved. Instead of this, if Eq.~56! fails to con-
verge, we take a long-time geometric average

ul1
~n!u5F Fmax

~n!

Fmax
~n2I !G1/I

, ~57!

where

Fmax
~n! [max@zpi

~n!~xk!# ~58!

with suitably chosen spanI . In what follows, we refer the
value ul1u as the spectral radiusrl .

, FIG. 8. The corresponding evolution for the vorticity but now
Re54915~a! at t55000 LBE time steps~3.7 eddy turnover times!,
~b! at t510 000 LBE time steps~7.4 eddy turnover times!, ~c! at t
.17 500 LBE time steps~12.9 eddy turnover times!, ~d! at t
520 000 LBE time steps~14.8 eddy turnover times!. These runs
were actually at Pr51.32, but as we have already noted, there a
no direct effects on the geometric vorticity structures.
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In Figs. 9–11, we plot the spectral radius as a function
initial internal energy«0 for various Prandtl numbers. From
our work on the numerical stability of TLBE 13-bit hexag
nal @9# and square models@20# with single-time BGK relax-
ation, it was determined that the spectral radius beco
independent of lattice size provided that the hexagonal lat
size was not less than 4003400, and the square lattice wa
not less than 80380. In Fig. 9, the spectral radius is plotte
at t50.502~i.e., m050.002! for the hexagonal lattice. Note
that for an equilibrium velocityv050.08, this would corre-
spond to a Reynolds number>50 000. For very low Prandt
numbers, one finds two moderately sized ‘‘stability’’ win
dows in temperature. As the Prandtl number increases, t
‘‘stability’’ windows shrink considerably until they becom
invariant to the Prandtl number for Pr.0.33. The corre-
sponding spectral radius plot for the square lattice is sho
in Fig. 10 fort50.55~i.e., m050.05 and Re on the order o
2000!. One can achieve a meaningful stability wi

FIG. 9. The spectral radius for a hexagonal 4203420 grid as a
function of «0 for various Prandtl numbers. We find that the spe
tral radius becomes independent of the Prandtl number for
.0.33 @plotted is the spectral radius for Pr50.33, Pr50.5, Pr
51.17, and Pr5infinity#.

FIG. 10. The spectral radius for the 13-bit TLBE model of R
@20# on an 80380 square grid for various Prandtl numbers:
50.04, Pr50.33, Pr51.17 and Pr5infinity.
f

es
e

se

n

dow at practical Prandtl numbers for the square lattice
t50.6 ~i.e., m050.1!. Fig. 11.

V. CONCLUSIONS

To handle flows with variable Prandtl number, we ha
proposed an extended collision matrix that includes the us
BGK form as a special case. The use of full collision mat
with different eigenvalues was previously attempted by M
Namara and Alder@12#. However, their approach fails to
produce the correct transport coefficients and they find
they lose the correct form of the energy conservation eq
tion. A somewhat different approach was proposed by C
et al. @13#. They introduce an additional free parameter in
the form of the equilibrium distribution functionNpi

eq, and
use this to have a flexible ratio of viscosity and thermal co
ductivity. However, incorporation of the additional free p
rameter produces an unphysical term in the heat flux ve
and the minimization of such unphysical effects requires t

FIG. 12. Shear viscositym for isothermal Poiseuille flow as a
function of relaxation parametert as determined from the extende
collision operator TLBE~open squares, dark squares! and from the
Chapman-Enskog theory~solid lines! for 2 values of the internal
energy«50.35 and 0.5. These results were generated at Pr50.1.
Table I verifies the well-known result thatm is independent of Pr.

-
r

FIG. 11. The spectral radius for the 13-bit TLBE model of Re
@20# on a 80380 square grid for variousm0 at Pr50.5.
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free parameter value to be close to unity. As a result, th
scheme allows Prandtl number variations only within a li
ited range.

An advantage of the extended collision matrix presen
here is that it is simple and computationally efficient. B
cause of its eigenvalue properties, matrix inversion is
trivial as in the case of scalar BGK operator. Also with t
additional free parameter introduced in the off-diagonal co
ponents, one now has multi time-scale relaxation parame
that allow generalizations to variable Prandtl number sim
lations. It is also important to remove the density depende
at each lattice node from the transport coefficients, and
can be readily accomplished.

We have carried out simulations of a 2D free decay
turbulence induced by a strongly perturbed double velo
shear layer. In particular, we have considered the effec
this turbulence at various Prandtl numbers. A linear stabi
analysis indicates that varying the Prandtl number does
adversely affect the limited stability window in TLBE mod
els invoking free-streaming in its difference scheme. Sin
we are here dealing with free-decaying turbulence, we fi
~not unexpectedly! that Prandtl number variation does n
have a leading order effect on the geometric structures
they evolve in time—the effects of advection mask the
fects of transport. However, we do notice significant mag
tude variations in the size of these structures.
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APPENDIX: SOME NUMERICAL TESTS
ON THE EXTENDED COLLISION OPERATOR

We now present details of some of the numerical test
have performed to verify that our matrix collision operat
on the hexagonal lattice accurately simulates variable Pra
number flows. In particular, we show for isothermal P
seuille flow that the TLBE viscositym is independent of the
Prandtl number and the TLBE thermal conductivityk ~deter-
mined from the heat transfer across a linear temperature
dient, using Fourier’s lawq52k“T! varies inverses with
the Prandtl number. We also find excellent agreement

TABLE I. A verification that the TLBE viscosity is independen
of Prandtl number in isothermal Poiseuille flow. The mean simu
tion value and the standard deviation are computed for 50 value
the Prandtl number, 0.1<Pr<9.9. There is also excellent agreeme
between TLBE-m and the theoretical Chapman-Enskogm.

t m ~theory! ^m ~simulation!& std. ~simulation!

0.51 0.666 67 (22) 0.682 37 (22) 2.0 (29)
0.6 0.666 67 (21) 0.666 26 (21) 3.7 (28)
1.0 0.333 33 0.333 37 4.04 (26)
1.5 0.666 67 0.666 36 3.18 (25)
2.0 1.0000 0.998 59 1.07 (24)
2.5 1.3333 1.3293 2.54 (24)
3.0 1.6667 1.6583 4.93 (24)
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tween the TLBE transport coefficients and those determi
theoretically from the Chapman-Enskog theory, and for d
niteness we scan the Prandtl number range 0.1<Pr<9.9 in
steps of 0.2, for each relaxation parameter valuet ~here we
consider valuest50.51, 0.6, 1.0, 1.5, 2.0, 2.5, and 3.0!. The
boundary conditions are here enforced by standard bou
back.

1. Poiseuille flow

The viscosity is related@9# to the momentum at the chan
nel center by

m5
L2

8vcn
f , ~A1!

whereL is the channel width,vcn is the mean velocity at the
channel center, andf is the magnitude of the forcing. Th

FIG. 13. The dependence of the thermal conductivityk on the
Prandtl number Pr at relaxation parametert50.6. The Chapman-
Enskog theory~solid line! givesk'(Pr)21. TLBE simulations in-
dicate that one must perform up to 106 TLBE time steps to reach
steady state~open diamonds!, and one finds excellent agreeme
with theory. For comparison, the TLBE simulation result after 15

iterations are also shown~dark squares!. The simulations are per
formed for 50 Pr values. Table II tabulates the power curve fits
different t.

-
of

TABLE II. TLBE determination of the dependence of the the
mal conductivityk on the Prandtl number, 0.1<Pr<9.9, using the
power-law fitk5A(Pr)m. There is excellent agreement in both p
rametersA andm between the theoretical Chapman-Enskogk and
the TLBE-k. Note that for low values of the relaxation parametert,
one must proceed to more time iterations in order to reach ste
state.

t A
~theory!

A ~simulation! m ~theory! m
~simulation!

0.6 (105 iter.) 0.13333 0.13726 21 20.8829
0.6 (106 iter.) 0.13333 0.13405 21 20.99996
1.0 0.66667 0.6699 21 20.9975
1.5 1.3333 1.3405 21 20.99997
2.0 2.0000 2.0107 21 21
2.5 2.6667 2.681 21 21
3.0 3.3333 3.3512 21 21
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viscosity m must be independent of the Prandtl number.
Fig. 12, the Chapman-Enskog viscosity@determined from
Eq. ~39! and ~41!# is plotted as a function of the relaxatio
time t and compared to the simulation viscosity determin
from Eq. ~A1! for two values of the internal energy«50.5
and 0.35. We find excellent agreement. In fact, the curve
~for Prandtl number Pr50.1! are as follows:

«50.5: theory: m th520.3333310.66667t,

simulation: msim520.3315710.6648t,

and

«50.35: theory: m th520.2333310.46667t,

simulation: msim520.2342910.46786t.

To show that the viscositym is independent of the Prand
number, we perform TLBE simulations for these 50 valu
of Pr in the interval@0.1, 9.9#. For eacht, the results are
summarized in Table I in which we give the mean simulat
viscosity ~averaged over these 50 Prandtl numbers! as well
as its standard deviation~‘‘std’’ in Table I ! and compare
them to the Chapman-Enskog viscosity,m ~theory!. Our
simulations~with L5128 and 105 time steps in TLBE units!
are in excellent agreement with the Chapman-Enskog the
and show conclusively thatm in our TLBE extended colli-
sion operator form is independent of the Prandtl number
d J

tt
d

ts

s

ry

2. Fourier heat conduction

The simulation thermal conductivityk is determined from
the Fourier lawq52k“T by determining the heat transfe
across a temperature gradient at zero mean velocity, w
the Chapman-Enskog conductivity is determined from E
~38!, ~40!, and~42!. Since the channel walls are held at fixe
temperatures«50.5 and«50.4999, the resulting~simula-
tion! temperature profile is linear, leading to a constant te
perature gradient“T. We immediately note thatk should be
inversely proportional to the Pr:

k5
A~t!

Pr
~A2!

and hence will give an excellent test for the validity of o
extended collision operator. In Fig. 13 we plot the theoreti
Chapman-Enskog-k ~solid line! to the simulation-k for relax-
ation parametert50.6 for the 50 Prandtl values in the rang
0.1<Pr<9.9. Because of the lowt, one does not reach
steady state after 105 time iterations~dark squares!. After 106

iterations one reaches steady state and excellent agree
with the Chapman-Enskogk dependence on (Pr)21. The re-
sults of a power-law curve fit for various values oft are
shown in Table II, verifying that our extended TLBE coll
sion operator accurately simulates the (Pr)21 dependence
of k.
s
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